
1

This Document has been written during an internship working for the American Registry
for Internet Numbers (ARIN).

The following text is written for educational purposes. There are no warrants of guarantee,
ARIN does not provide support related to the content. ARIN is not responsible for the accuracy
of the content. Furthermore ARIN is not reliable, implied or expressed for the content. Users
of this document use the document at their own risk.

Chapter 1

Introduction

1.1 Why?
The old VPN solution was unreliable, relied on proprietary software and only supported Win-
dows computers.

1.2 Goals
One of the primary goals of this VPN-Solution is compatibility. There must be VPN-clients
for every operating system that the company uses, so the main focus in this case is Windows,
Mac OS X, and Linux. Additionally, handhelds should be able to connect to the VPN. The
preferred solution would not require a proprietary VPN-Client, but rather utilize the built-in
clients of the operating systems. As the goal of this project thesis is to use only free and open
source software, the VPN services should only rely on free implementations of VPN-protocols,
and operating systems.

The operating system of my choice was Linux 2.6, for several reasons:
• I know it

• I like the way, most Linux distributions deal with packages

• Linux is widely supported

• Linux is free

• You can choose between ISAKMPDaemons1, and are not forced to use the BSD-Implementation,
if you took a BSD, for example.

• Linux usually tries to support interoperability, whereas BSD usually doesn't care about
interoperability too much.

• You can �nd a lot of documentation about Linux on the Internet.

1.3 Expectations for the reader
This document describes a technical implementation for an IPsec based VPN solution. It deals
with the server and the client implementation, and tries to be a guide to make the reader
understand why and how I did things. It is deeply technical, and a good or better deep
knowledge about Linux and networking is assumed.

1More on ISAMKP later

2

Chapter 2

Technical Implementation

2.1 Standard Protocols
In this document we will deal with only 2 protocols, PPTP and IPSEC. Both are supported
'out of the box' by the Windows and the Macintosh (version 10) operating systems, and that
is, why they are called 'standard' here.

2.1.1 PPTP
The Point to Point Tunneling Protocol (PPTP) is used to secure PPP connections over a
TCP/IP link. Microsoft released extensions to the PPTP authentication mechanism (MS-
CHAPv2). Another Microsoft extension is the Microsoft Point to Point Encryption (MPPE).
It should be noted, that these extensions are Microsoft-proprietary, nevertheless, we will have
a short look at them.

MS-CHAPv2 uses some very complicated hashing-algorithms, and some senseless procedures
like using the SHA-Algorithm on some data twice.

MPPE is an encryption algorithm, that is only as good as the passwords that are used for
authentication as MPPE keys get derived from MS-CHAPv2.

As all this is very Microsoft-proprietary, it is hard to implement solutions in open source
software (although there are Linux-Kernel Patches), beyond that fact that the encryption al-
gorithm is not secure, as it is only based on the authentication data. PPTP is therefore not
the protocol we are looking for.

2.1.2 IPsec
IPsec, which is the short form for IP Security, is a set of protocols developed by the IETF
to support secure exchange of packets at the IP layer. It's main purpose is to support VPN,
which is exactly, what we are looking for. For IPsec to work, the sending and receiving devices
must share a public key. This is a accomplished through a protocol known as Internet Security
Association and Key Management Protocol (ISAKMP), which allows the receiver to obtain a
public key and authenticate the sender using digital certi�cates.

There are two modes of IPsec - tunnel and transport mode. Tunnel mode is used for
secure communication between subnets, this is very useful for connecting two company-sites,
for example. The solution we are looking for is called Transport mode. IPsec should guarantee,
that the packets are encrypted, authenticated and anti-replay protected. IPsec encrypts every
IP packet which requires that it reside in the kernel of an operating system, and not in userspace.

By design, IPsec communication is encrypted by symmetric algorithms (Blow�sh, DES,
3DES). The whole packet is not encrypted, only the data (payload), not the IP-Headers. This

3

CHAPTER 2. TECHNICAL IMPLEMENTATION 4

is known as ESP-Mode. encrypted (and authenticated) headers can be achieved with Authenti-
cation Header (AH) mode. We will only focus on ESP-Mode, as we are interested in encrypting
our data tra�c, and are not interested in authentication in this layer.

Authentication can be done with a pre-shared key (which is considered weak) or by using
certi�cates, which is quite a secure solution.

IPsec is our �rst choice, as it is an approved IETF standard, free implementations exist,
and Windows, Mac, Pocket PC, Linux and BSD clients support it.

2.1.2.1 Kernel Space and Userspace
The IPsec Stack itself is implemented in the kernel space.

ISAKMP usually happens in userspace, this is where racoon or openswan come into play.
Both, racoon and openswan are ISAKMP daemons. They deal with either pre-shared keys, or
certi�cates, listen on UDP Port 500 and 4500 (optional for NAT-T), interact with the �lesystem,
and are necessary for the handshake. As soon as the encryption mechanisms and handshakes
have been made, the kernel will communicate with the the corresponding side.

2.1.2.2 A word on NAT-Traversal
If a client is behind a NAT-�rewall, IP packets are modi�ed by the NAT-Device. This means
that checksums concerning the IPsec packets would be incorrect. IPsec was originally not
designed to work with NAT. Therefore NAT-Traversal extensions have been developed, to make
IPsec work behind NAT devices. Clients and VPN-Server have to support NAT-T. Linux 2.6
supports NAT-T out of the box, whereas racoon at the time of writing supports only NAT-T in
tunnel mode. Openswan supports tunnel and transport mode NAT-T, which is why openswan
is the solution we are looking for.

2.2 Operating System clients
Choosing IPsec as the standard is a good start, but when it gets to the operating system built-in
clients, things get more complicated.

2.2.1 Microsoft Windows XP/2000
Microsoft did some weird things with their VPN-standard-con�guration. Microsoft claims,
this is a standard, but in fact, their implementation is only based on standards. In Microsoft's
implementation PPP packets are encapsulated in L2TP packets, which are encapsulated in IPsec
packets. It is acceptable to use PPP for establishing a point-to-point connection, and using
IPsec to establish a secure connection. But the value of L2TP in Microsoft's implementation
is questionable. L2TP would come in very handy for Layer 3 independent protocols (not only
IP could be transported over L2TP, as L2TP means Layer 2 Tunneling Protocol), however this
doesn't make any sense, because PPP does not support this. Nevertheless, to stay compatible,
we will use the same standards on the server side1. If this paragraph confused you, have a look
at the illustrations in 2.6.

Beyond that protocol-encapsulation-jungle, Microsoft authenticates users by using certi�-
cates for IPsec, and additionally, using the CHAP Protocol. IPsec authentication using a

1Hint: It is possible to use pure IPsec with windows, without L2TP and PPP, but as you couldn't use
the standard VPN-client but a console-tool, we will avoid this solution due to end-user confusion. Security
doesn't su�er by using the PPP-L2TP-IPsec Solution, as IPsec is the outermost protocol, that will be actually
transported over the wire.

CHAPTER 2. TECHNICAL IMPLEMENTATION 5

pre-shared key is supported, but is considered insecure, and therefore is unacceptable . It is
possible to use the pure IPsec stack of Windows, but you can't use the standard client then,
which would confuse users.

2.2.2 Mac OS X 10.3.x
Mac OS X uses the same technology as Microsoft does. They do this to stay compatible with
Microsoft, and therefore support connections to Windows-VPN-Servers. So all of 2.2.1 also
applies to the Macintosh Operating System. Yet Mac OS X o�ers one great advantage: If you
know racoon (will be described in the server section), you can tweak the con�g-�le of the mac
to your needs, which will get very handy later on.

2.2.3 Handhelds
Windows Handhelds with the Pocket PC 2003 operating system are fully supported. The
con�guration on the handheld computer is somewhat strange, because you can not just 'dial'
in the VPN, because the handheld tries to be that smart, and decide for you, when to dial into
the VPN. You have to create a special list for the handheld to let it know: �This is inside the
VPN-network�.

2.2.4 Unix Clients
Unix clients will work. Just read on.

2.3 Server Side
Portability is everything. I chose Linux for my server because I like the way Linux handles
packages, and most if not all of the packages are available for Linux. Packages alleviate the
need for manual compilation and make upgrades easy.

The IPsec Stack used, is based on KAME, which is available for most free UNIX-Operating
Systems. You will �nd that the code is available on 2.6sec (Linux 2.6), FreeBSD and OpenBSD.

2.3.1 Not covered here
• Implementation with FreeSwan or StrongSwan. This con�guration is possible with these

products, yet it is not very portable.

• OpenVPN - a free userland-VPN implementation, which is quite good and very portable,
but does not meet my requirements because it is not an IETF standard, does not use the
built-in clients and does not support pocket devices.

2.3.2 Prerequisites
I will not go into the details of kernel compilation. There are good howtos on the Internet for
that. You want to have IPsec con�gured in your kernel. In Linux 2.6 this would look similar
to this:

CONFIG_INET_ESP=y
CONFIG_NET_KEY=y
CONFIG_CRYPTO_HMAC=y
CONFIG_CRYPTO_MD5=y

CHAPTER 2. TECHNICAL IMPLEMENTATION 6

CONFIG_CRYPTO_SHA1=y
CONFIG_CRYPTO_DES=y
CONFIG_UNIX98_PTYS=y
CONFIG_LEGACY_PTYS=y

I do not recommend enabling modules in the kernel, unless you have a good reason (although
I couldn't think of any). Note: You don't need any extra patches for your Linux kernel in this
con�guration (as opposed to ms-pptp)

Beyond the kernel con�guration, be sure that your OS is up and running, and network-
connections are working �ne.

2.3.3 Software packages
• PPP is handled by pppd

• L2TP is handled by l2tpd (www.l2tpd.org)

• IPsec is handled by Linux 2.6 and openswan as the ISAKMP daemon (www.openswan.org)

• Alternatively, you can use racoon as the ISAKMP daemon (www.kame.net/racoon/)

• Certi�cates can be issued with openssl

Of course, all of the dependencies of these packages have to be met. ISAKMP is necessary to
communicate with the kernel, whereas various implementations of l2tp daemons exist. Cer-
ti�cates do not necessarily need to be issued by openssl, and there might be an alternative to
pppd. I chose the most supported software packages in this case.

2.3.4 Con�guration tasks
2.3.4.1 openssl [Lnk: NCa]
To generate certi�cates, it is necessary to have a certi�cate authority (CA). Setting up a cer-
ti�cate authority works pretty simple, if you use a shellscript, that is provided with openssl. In
my case this shellscript resides in /usr/share/ssl/misc/ and is called CA. The command

./CA -newca

will create a new CA.
Every client that wants to connect to the VPN-box, will require a certi�cate. The VPN-box

itself needs a certi�cate. You can do this with this two really simple commands:

./CA -newcert

./CA -signcert

In order to keep things organized, rename or copy the key-�le and the cert-�le:

cp newcert.pem workstation1.pem
cp newreq.pem workstation1.key

In order to use the certi�cate with racoon, it is necessary to strip the password from the private
key-�le, as racoon does not support private key-�les, which will require a password. Do that
with

CHAPTER 2. TECHNICAL IMPLEMENTATION 7

openssl rsa -in workstation1.key -out workstation1.decrypted.key

As windows-clients do not like the pem-format, we export the certi�cates for the windows-
clients to the p12 format (the p12 contains both, private key and certi�cate-�le), as this format
can be imported easily in windows:

openssl pkcs12 -export -in workstation1.pem -inkey \
workstation1.key -cert-file demoCA/cacert.pem -out \
workstation1.p12

Note that in the above example, it is assumed, that the root certi�cate resides in ./de-
moCA/cacert.pem.

2.3.4.2 openswan [Lnk: OSW] [Lnk: NCa]
Racoon has some problems, but there are some reasons why you might want to stick with it:

• You don't want to use Linux as your VPN-Server but a BSD-variant, for example.

• You don't care about NAT-Traversal issues in Transport Mode with racoon.

• NAT-T support for Racoon is already implemented, when you read this.

Otherwise Openswan is the ISAKMP daemon I chose. Several reasons led to this decision:

• Support for Certi�cate Revocation Lists (CRL) to revoke certi�cates

• Easy con�guration Syntax

• Support for NAT-Traversal (Road Warriors behind NATed networks)

• Good documentation and support can be found on the Internet

• My personal experience with openswan: more rock-solid than racoon

Openswan does nothing di�erently compared to racoon, it is an ISAKMP daemon. The won-
derful thing about openswan and Linux 2.6 is, that you don't need to patch your kernel to
work with openswan. Openswan is fully compatible to the 2.6sec implementation. All you need
to get openswan working, is the user-land daemon itself. If you want to use kernel 2.4 and
openswan, you have to patch the kernel with the openswan kernel patches.

The creation of the con�g-�le requires some tweaking and patience, and some help from the
Internet [Lnk: JDL].

My sample con�guration �le for support for various road warriors looks like this (/etc/ipsec.conf):

version 2.0config setup
interfaces=%defaultroute
forwardcontrol=yes
nat_traversal=yes
virtual_private=%v4:10.0.0.0/8,\

%v4:172.16.0.0/12,%v4:192.168.0.0/16
conn %default

keyingtries=1
compress=yes
disablearrivalcheck=no

CHAPTER 2. TECHNICAL IMPLEMENTATION 8

authby=rsasig
leftrsasigkey=%cert
rightrsasigkey=%cert
pfs=no

conn roadwarrior-l2tp-updatedwin
pfs=no
leftprotoport=17/1701
rightprotoport=17/1701
also=roadwarrior

conn roadwarrior-l2tp
pfs=no
leftprotoport=17/0
rightprotoport=17/1701
also=roadwarriorconn

macintosh-l2tp
pfs=no
leftprotoport=17/1701
rightprotoport=17/%any
also=roadwarriorconn

roadwarrior
left=%defaultroute
leftcert=vpn1.company.net.pem
right=%any
auto=add
type=transport

Very Important : Indentations matter. Therefore do a tab-indentation for the indented lines, if
you would copy my sample con�g-�le.

• Left and right de�nes server-side and client-side. Left in my example stands for the server,
and right for the clients.

• The auto=add con�guration parameter enables the con�guration section. Without this,
you would be forced to 'start' this section by hand, which would not really become handy
on a production server.

• The also con�guration-parameter includes additional sections (works like #include in c).

• Openswan is able to identify the di�erent clients on the behavior, how they send packets.
It is visible in my example, that macintosh computer behave di�erent than windows-
computers.

• PFS stands for perfect forwarding secrecy, which would enable encryption algorithms,
where penetration of the key-exchange protocol would not compromise keys negotiated
earlier. Unfortunately, Windows does not support this without hacking the registry. 2

Certi�cate �les have to be copied to /etc/ipsec.d/ into the appropriate directories. Openswan
also supports a password-protected private key �le, but you have to type that secret password
in a �le (/etc/ipsec.secret) in clear-text anyway.

Openswan requires the ipsec-tools. It is poorly documented, but one has to �ush the SA
entries in the kernel after starting openswan. To start openswan, one might enter the following
command in order to maintain connectivity to the openswan box:

2How often do we read this?

CHAPTER 2. TECHNICAL IMPLEMENTATION 9

/etc/init.d/ipsec start; sleep 5; setkey -FP

Of course this has to be tweaked in the startup-scripts, too. Important: Openswan logs to
/var/log/secure, not /var/log/daemon or similar �les.

2.3.4.3 racoon [Lnk: KME]
Racoon is the userspace daemon for key exchange, speaks ISAKMP, and communicates from
userland with the kernel to con�gure some parameters of IPsec. Racoon has to be run as a
daemon to handle the correct key exchange. It will log to syslog for debugging, and is controlled
by a few con�g �les. Racoon will listen on UDP port 500, so the �rewall in front of the VPN-box
needs to allow tra�c to this port.

The need for the user space daemon is quite simple: Racoon searches for certi�cates, that
are provided via con�g �le, it de�nes and restricts the key exchange modes between IPsec hosts,
and sets key policies. Racoon is controlled over a con�g-�le. My sample con�g-�le is provided
here:

log debug;
path certificate "/etc/racoon/certs/";
listen {

isakmp 192.168.0.1 [500];
}
padding
{

maximum_length 20; # maximum padding length.
randomize off; # enable randomize length.
strict_check off; # enable strict check.
exclusive_tail off; # extract last one octet.

}
remote anonymous {

exchange_mode main,aggressive;
doi ipsec_doi;
situation identity_only;
generate_policy on;
my_identifier asn1dn;
peers_identifier asn1dn;
verify_identifier on;
certificate_type x509 "vpnbox.certificate.pem" "decrypted.rsa.key";
verify_cert off;
proposal {

encryption_algorithm 3des;
hash_algorithm sha1;
authentication_method rsasig;
dh_group modp1024;

}
}
sainfo anonymous {

lifetime time 28800 sec;
encryption_algorithm 3des ;
authentication_algorithm hmac_md5;
compression_algorithm deflate ;

}

CHAPTER 2. TECHNICAL IMPLEMENTATION 10

Every detail about this con�guration can be found in the racoon man page, yet here some
important hints:

• The default racoon.conf deals with pre-shared keys. Don't forget to insert the certi�cate
path in the �rst line.

• The remote directive speci�es the parameters for IKE phase 1 negotiation.

• Verifying the certi�cate only works, if the root certi�cate is signed by a trusted authority
(e.g. Verisign, Thawte, etc). Therefore I had to turn verify_cert to o�.

• Encryption algorithms are limited to the supported client encryption algorithms.

• The certi�cate �le and the (passwordless) key �le generation were described on Page 6
(openssl).

• The sainfo directive speci�es the parameters for IKE phase 2 negotiation.

A script, that sets the IPsec policy, that will encrypt outgoing packets (for l2tpd) looks like
this (I called it /etc/racoon/setup.sh):

#!/bin/bash
/sbin/setkey -FP
/sbin/setkey -F
/sbin/setkey -c < < EOF
spdadd 192.168.0.1[1701] 0.0.0.0/0[0] any

-P out ipsec esp/transport//require;
EOF

Hint: man setkey reveals all possible con�guration data.
Start this script at boot-time, to set the IPsec Policy to encrypt for all outgoing data from

the l2tpd. This script will actually also be called, when pppd hangs up, to reset the policy
database (�ush it).

2.3.4.4 l2tpd
L2tpd's task is to decapsulate the layer 2 packets (which are actually only ppp packets), and
send them to pppd. The used l2tpd is quite a simple program, also the con�guration is pretty
simple. As mentioned before, l2tpd has no real use in this con�guration, but it is necessary to
use it, as otherwise the client connection will fail. l2tpd has no encryption or security functions
in this case. It's main use would be to stay layer 3 protocol independent, which in this case,
does not make sense. Nevertheless it provides the IP assignment for the client (as seen below).

The con�guration �le of l2tpd looks like this:

[global]
port = 1701
[lns default]
ip range = 192.168.0.10 - 192.168.0.20
local ip = 192.168.0.1
require chap = yes
refuse pap = yes
require authentication = yes
hostname = LinuxVPNserver

CHAPTER 2. TECHNICAL IMPLEMENTATION 11

ppp debug = yes
pppoptfile = /etc/ppp/options.l2tpd
length bit = yes

Unfortunately there is almost no documentation concerning l2tpd.conf. I found this statement
from the author (found in l2tpd.conf.sample):

; This example file should give you some idea of how the options for l2tpd
; should work. The best place to look for a list of all options is in
; the source code itself, until I have the time to write better documentation :)
; Specifically, the file "file.c" contains a list of commands at the end.

2.3.4.5 pppd
The Point to Point Protocol Daemon decapsulates the ppp packets, and places them in the
kernels IP stack. PPPD is also able to do authentication. This is what the Clients do. First
they initiate a IPsec-connection. After a successful IPsec authentication, the CHAP process
takes place, which authenticates against a password database. Luckily, PPPD is mature, and
can authenticate against various databases - a plain text �le with authentication data in it, the
Linux passwd / shadow �les, even ldap or radius would be supported.

The sample con�guration for options.l2tpd3 for me looks like this:

ipcp-accept-local
ipcp-accept-remote
ms-dns 192.168.0.9
ms-wins 192.168.0.9
auth
crtscts
idle 1800
mtu 1400
mru 1400
nodefaultroute
nodetach
debug
lock
proxyarp
connect-delay 5000
disconnect /etc/racoon/setup.sh

The man page of pppd describes all the details about these con�guration directives. The last
line with the disconnect statements �ushes the SAD entries in the IPsec stack, and sets the
policy up again.

At the moment I authenticate against a plain password �le called chap-secrets:

Secrets for authentication using CHAP
client server secret IP addresses
wogri * "mypassword" 192.168.0.0/24

3This �le is mentioned in the l2tpd.conf �le, and de�nes the options for pppd

CHAPTER 2. TECHNICAL IMPLEMENTATION 12

2.3.4.6 kernel con�guration changes
• Enable IP forwarding via sysctl - here the Linux-example - sysctl.conf:

Controls IP packet forwarding
net.ipv4.ip_forward = 1

• Disable source route veri�cation

Controls source route verification
net.ipv4.conf.default.rp_filter = 0

The enabling of IP forwarding is self explainitory. Source route veri�cation must be turned o�
in order for packets that reach the interface to not dropped by the kernel. Route veri�cation
is the practice of discarding packets received on an interface which does not expect to those
handle tra�c from the given source address.

2.4 Client Side [Lnk: JDL]
The whole setup describes a road warrior 4 setup. The goal is to tell the client to use PPP/L2TP/IPsec
encapsulation to send it's packets.

2.4.1 Microsoft Windows XP SP2
The following instructions apply to Windows XP SP2, whereas I assume all these rules also
apply to XP SP1, XP and Windows 2000.

1. Go to network connections

2. Create a new network connection

3. Choose 'connect to the network at my workplace'

4. Choose VPN connection

5. Enter Company name

6. Choose to dial an initiating connection, if you have dial-up

7. Enter IP or hostname for your VPN Box

8. Finish

One might want to go to connection properties, networking tab and select L2TP IPsec VPN
in the drop-down box (This speeds up your �rst connection try). Next step is to import the
generated .p12 certi�cates on every windows-machine.

1. Open an mmc: Start | Run | type mmc | hit ENTER

2. Click File | Add/Remove Snap-in
4A road warrior is usually a laptop, that is 'on the road', and connects to the VPN from anywhere. These

mobile computers have to be secured very well, as they might pose an invisible threat to the network if someone
gains access to these laptops

CHAPTER 2. TECHNICAL IMPLEMENTATION 13

3. Click Add

4. Select Certi�cates and click Add

5. Select Computer Account5, click Next

6. Click Finish

7. Click Close

8. Click OK

9. Double Click Certi�cates

10. Right Click Personal, select All Tasks and click Import

11. Click Next

12. Enter the path to the .p12 �le

13. Click Next

14. We stripped the password, so just click Next

15. Select 'Automatically select the certi�cate store based on the type of certi�cate', click
Next

16. Click Finish

Done. No need to associate the Certi�cate with the Connection, as this is done automatically by
Windows. In my project I automated this task, so that the clients would only get a setup.exe,
the certi�cates would be downloaded from a secure server during the setup, and all other clickety
stu� is done auto-magically (I used the Nullsoft installer and the Windows Scripting-Program
Automateit for that).

2.4.2 Mac OS X
The Mac is based on con�g and log �les, racoon, and a GUI wrapper, which makes con�guration
very easy.

Setup a VPN(L2TP) connection:

• Open Internet Connect

• Click File | New

• Choose L2TP over IPsec

• Enter the server address, account name (user name) and password

The next step is to tweak /etc/racoon/racoon.conf because the default on the Mac is that when
you connect to a L2TP/IPsec host, the con�g �le will be generated on the �y, and racoon will
be started. As special parameters are needed, my racoon.conf looks like the following for a
racoon-VPN-server (This con�guration ignores the on the �y-con�g-�les):

5It is important to import the certi�cate for the computer, as windows doesn't use the certi�cate otherwise.
If you do only want the certi�cate be based on user-level, you will have to �gure out some other method

CHAPTER 2. TECHNICAL IMPLEMENTATION 14

path include "/etc/racoon" ;
racoon will look for certificate file in the directory,
if the certificate/certificate request payload is received.
path certificate "/etc/racoon/certs" ;
"padding" defines some parameter of padding. You should not touch
these.
padding
{

maximum_length 20; # maximum padding length.
randomize off; # enable randomize length.
strict_check off; # enable strict check.
exclusive_tail off; # extract last one octet.

}
listen
{

}
timer
{

These value can be changed per remote node.
counter 10; # maximum trying count to send.
interval 3 sec; # interval to resend (retransmit)
persend 1; # the number of packets per a send.
timer for waiting to complete each phase.
phase1 30 sec;
phase2 30 sec;

}
sainfo address ::1 icmp6 address ::1 icmp6
{

pfs_group 1;
lifetime time 60 sec;
encryption_algorithm 3des, cast128, blowfish 448, des ;
authentication_algorithm hmac_sha1, hmac_md5 ;
compression_algorithm deflate ;

}
remote anonymous {

exchange_mode main;
doi ipsec_doi;
situation identity_only;
generate_policy on;
my_identifier asn1dn;
peers_identifier asn1dn;
verify_identifier on;
certificate_type x509 "mycert" "mypriv";
verify_cert off;
proposal {

encryption_algorithm 3des;
hash_algorithm sha1;
authentication_method rsasig;
dh_group modp1024;

CHAPTER 2. TECHNICAL IMPLEMENTATION 15

}
}
sainfo anonymous {

lifetime time 28800 sec;
encryption_algorithm 3des ;
authentication_algorithm hmac_md5;
compression_algorithm deflate ;

}

For Openswan my racoon.conf looks like this:

path certificate "/etc/racoon/certs";
padding{

maximum_length 20; # maximum padding length.
randomize off; # enable randomize length.
strict_check off; # enable strict check.
exclusive_tail off; # extract last one octet.

}
Specification of default various timer.
timer{ # These value can be changed per remote node.

counter 5; # maximum trying count to send.
interval 20 sec; # maximum interval to resend.
persend 1; # the number of packets per a send.

timer for waiting to complete each phase.
phase1 30 sec;
phase2 30 sec;

}
remote anonymous {

exchange_mode main, aggressive;
doi ipsec_doi;
situation identity_only;
certificate_type x509 "mycert" "mypriv";
verify_cert off;
my_identifier asn1dn;
peers_identifier asn1dn;
verify_identifier off;
lifetime time 28800 seconds;
initial_contact on;
passive off;
proposal_check obey;
support_mip6 on;
generate_policy off;
nonce_size 16;
proposal {

encryption_algorithm 3des;
hash_algorithm md5;
authentication_method rsasig;
dh_group modp1024;

}
}
sainfo anonymous {

CHAPTER 2. TECHNICAL IMPLEMENTATION 16

lifetime time 28800 seconds;
encryption_algorithm 3des, aes 128;
authentication_algorithm hmac_md5;
compression_algorithm deflate;

}
listen {

}
log debug;

Finally you copy your certi�cate pair (pem �le and stripped rsa-key-�le) to /etc/racoon/certs.
A wonderful way to let you create con�g-�les is a free tool called IPSecuritas, which uses

Mac OS X's built in racoon, but uses a GUI. With this you can do some experimentation, and
tweaking, and �nally use the resulting con�g-�le (they secretly place that con�g-�le in /tmp/
while an IPsec-connection is running, and racoon is up)

2.4.3 Linux
Linux as a client is similar to Linux as a Server. I use racoon as a client, because con�guring
racoon is the same on Linux as it is on all BSDs. These instructions should be portable to
BSD-OSes, which manage to get l2tpd to work.

The Kernel con�guration has to meet the requirements in 2.3.2. Racoon and the ipsec-tools
have to be installed. Furthermore l2tpd must be installed.

My racoon.conf on the client looks like the following:

path certificate "/etc/racoon/certs";
padding {

maximum_length 20;
randomize off;
strict_check off;
exclusive_tail off;

}
Specification of default various timer.
timer { # These value can be changed per remote node.

counter 5;
interval 20 sec;
persend 1;
phase1 30 sec;
phase2 30 sec;

}
remote anonymous {

exchange_mode main, aggressive;
doi ipsec_doi;
situation identity_only;
certificate_type x509 "mycert" "mypriv";
verify_cert off;
my_identifier asn1dn;
peers_identifier asn1dn;
verify_identifier off;
lifetime time 28800 seconds;
initial_contact on;

CHAPTER 2. TECHNICAL IMPLEMENTATION 17

passive off;
proposal_check obey;
support_proxy on;
generate_policy off;
nonce_size 16;
proposal {

encryption_algorithm 3des;
hash_algorithm md5;
authentication_method rsasig;
dh_group modp1024;

}
}
sainfo anonymous {

lifetime time 28800 seconds;
encryption_algorithm 3des, aes 128;
authentication_algorithm hmac_md5;
compression_algorithm deflate;

}
listen {

isakmp ;
}
log notify;

My Policy for the connection looks like this:

spdadd <vpn-server>/32 <local>/32 any -P in ipsec esp/transport//require;
spdadd <local>/32 <vpn-server>/32 any -P out ipsec esp/transport//require;

Beyond that, l2tpd.conf looks like this:

[lns default]
exclusive = no
ip range = 192.168.0.1-192.168.0.20
local ip = 192.168.1.2
name = myhostname
ppp debug = yes
pppoptfile = /etc/l2tpd/otions.l2tpd
call rws = 10
tunnel rws = 4
flow bit = yes
[lac vpn]
lns = 192.168.0.1
pppoptfile = /etc/l2tpd/options.l2tpd
redial=yes
max redials = 5
ppp debug = yes
local ip = 192.168.0.100
remote ip = 192.168.0.1

And my options.l2tpd:

CHAPTER 2. TECHNICAL IMPLEMENTATION 18

ipcp-accept-local
ipcp-accept-remote
user wogri
password password
noauth
crtscts
idle 1800
defaultroute
nodetach
nodeflate
nobsdcomp
debug
lock
connect-delay 5000

Connect to your VPN by telling l2tp to establish the connection:

echo �c vpn� > /var/run/l2tpd-control

Or use this script (which also adjusts routes):

#!/bin/bash
if [-z $1]
then

echo please specify an interface!
exit

fi
IP=$(ifconfig $1 | grep "inet " | awk \
'{ print $2 }' | cut -f 2 -d ':')
ROUTE=$(ip route list | grep default | awk \
'{ print $3}')
setkey -c < < EOF
flush;
spdflush;
spdadd 192.168.0.101/32 $IP/32 any -P in ipsec esp/transport//require;
spdadd $IP/32 192.168.0.1/32 any -P out ipsec esp/transport//require;
EOF
echo "c vpn" > /var/run/l2tp-control
sleep 10
route del -net default
route add -host 192.168.0.1 gw $ROUTE
route add -net default gw 192.168.0.1

The echo command will let L2TPD initiate a connection to the l2tpd on the server-side. The
IPsec policy says, that IP tra�c to this connection is encrypted, so the kernel will initiate an
IPsec connection to the remote host, then l2tp shakes hands, and �nally the ppp daemons shake
hands and connects.

2.4.4 Pocket PC 2003
Unfortunately, Pocket PC 2003 does not want support .p12 certi�cate �les. It prefers a Mi-
crosoft proprietary format. Fortunately, somebody reverse-engineered this format, and wrote a

CHAPTER 2. TECHNICAL IMPLEMENTATION 19

conversion tool to convert openssl certi�cates to this format. Unfortunately, Microsoft does not
provide a utility to import certi�cates, it only provides a utility to delete certi�cates6. Fortu-
nately, somebody wrote a tool to import those certi�cates into the handheld devices certi�cate
store.

To create such a certi�cate, use these commands (the pvk utility can be found on http://www.jacco2.dds.nl/networking/crtimprt.html):

openssl crl2pkcs7 -certfile newcert.pem -certfile \
./demoCA/cacert.pem -nocrl -outform PEM -out usercrt.p7b
pvk -in newreq.pem -topvk -nocrypt -out userkey.pvk

Next, get the crtimport-utility from http://www.jacco2.dds.nl/networking/crtimprt.html, and
copy the cert, the certimport-utilty and the crtimport.cfg-�le to the handheld device (Store all
these �les in 'My Documents', otherwise the import will fail, unless you change crtimport.cfg).
Run the crtimprt executable, it should tell you, that the certi�cates have been imported �ne.
Set up the VPN-Connection with the tool, Microsoft provides, and you're done.

2.5 Firewall
All this con�guration assumes, that the VPN-box 'sits' in the network segment, where all the
other workstations reside. It is very important to �rewall the VPN-box, as L2TPD would listen
on port 1701, and an attacker could easily pass around the IPsec Security Layer, if this port
was world-wide open. Only 2 rules need to be allowed to go to the VPN-box: Port 500 / UDP
for ISAKMP and the ESP Protocol.

Given, the �rewall is a stateful Linux-�rewall, the rules would look like this:

iptables -A FORWARD -d $vpn -p esp -j ACCEPT
iptables -A FORWARD -d $vpn -p udp --dport 500 -j ACCEPT

2.6 Illustrations
2.6.1 Network Diagram
Below the networking diagram, which assumes that the VPN-Box has an o�cial IP-Address
and the �rewall routes this tra�c to the VPN-Box.

VPN Box[es]

Company Firewall

Internet

Road Warrior

Company Intranet

6I think that is pretty funny; Well done, Microsoft.

CHAPTER 2. TECHNICAL IMPLEMENTATION 20

2.6.2 How a packet is encapsulated

An outgoing IP packet is encapsulated in a PPP packet. This PPP packet is encapsulated
in a L2TP packet. Again, this encapsulation does not make any sense, but it is declared
'Standard' from Microsoft. The resulting L2TP packet is �nally encrypted (Enc { }) by the
IPsec stack, the IPsec headers and trailers are added, and the resulting ESP packet leaves the
network interface.

The receiver of the packet strips the packet using the decapsulation the other way round.

2.7 Security
2.7.1 General
The de�nition of the term security is very subjective. VPN-Connections are one of the greatest
security-threats because road-warriors are not under the control of the sysadmins and usually
'invisible' to the network structure. If the laptop gets stolen, or just in the hands of a bad
person, the intruder can do much harm to the network.

2.7.2 IPsec Protocol
The IPsec protocol itself is considered secure, there doesn't seem to be a better supported
or more secure protocol that would meet all these requirements. As all the data which �ows
over the network is encrypted with strong algorithms, and the certi�cate method is considered
secure, eavesdropping of the line should not easily be possible. Physical security is important,
though, as the certi�cates are stored on the client machines. With the certi�cate in the bad
man's hands, eavesdropping is de�nitely possible.

2.7.3 Network Layout
The VPN box sits on the internal network. There is no other place it should be put, unless
the companies network infrastructure allows for that (DMZ for example). Some example im-
plementations have dual-homed VPN-boxes. I consider that very insecure, as an intruder may
bypass all �rewall systems because he has control over the VPN box and can therefore hide
tra�c.

2.8 Security Improvements
2.8.1 Read-Only Filesystem / Boot from Compact Disc [Lnk: BCD]
The more secure, the better. CD-Rom drives are a very common device, and can be found in
nearly every computer nowadays.

CHAPTER 2. TECHNICAL IMPLEMENTATION 21

2.8.1.1 The Concept
Is it possible to boot a working operating system from a read-only disk? Yes it is, but one has
to pay attention that some locations on a Unix-system should still be writeable. The following
directories are writeable on my example box:

/var/log Logfiles
/tmp Temporary Files
/var/run Sockets and PID-Files
/var/lock Lockfiles
/var/spool/postfix Files for my MTA

Start out by copying your current installation to another partition, change the init-scripts to
not remount the root-�lesystem (and no other partition, if you use multiple partitions) in read-
write mode, and modify or insert your own init-scripts to make the system boot into working7
read-only mode.

2.8.1.2 Ramdisks
A ramdisk is a reserved space of memory, which can contain a �lesystem, and thus, be mounted
in the system. We use ramdisks for providing writeable space on our read-only �lesystem. Every
time, the computer is rebooted, the contents of the ramdisks are lost. If you want permanent
writeable space, you must either use nfs (or another networking �lesystem), or use a remote
syslogd, if you only want permanent logs.

Format a ramdisk, which will provide 8 Megabyte of Space with the command:

mke2fs -q -I 1024 /dev/ram1 8192

You cam mount the ramdisk afterwards with the usual mount-command.

2.8.1.3 Random Access Memory Amount
Ramdisks use or waste (depends on your point of view) memory. As you don't have a hard-
disk, you can not swap memory. Therefore it is important to equip your machine with enough
Memory to bear the load.

My system uses approximately 40 megabytes of RAM after booting. If I initiate an IPsec
connection to the box, it uses another 0.5 Megabytes of RAM, for each additional connection.
The post�x daemon itself uses some memory during processing of e-mails (I use it for noti�cation
E-Mails, see 2.8.1.9). So 512 or 1024 megabytes of RAM should be enough for a production
system with about 100 users.

2.8.1.4 Device File System
According to http://www.linuxjournal.com/article.php?sid=7233 it is recommended to use the
devfs, the device �le system. Why? This proc-like �lesystem for device nodes also resides in
RAM, and gives us more �exibility. What you will need:

• A devfs enabled kernel (see 2.8.1.7 for all kernel requirements), which mounts the devfs
on boot.

• The devfsd, which starts before any other program called by init
7Working in this sense means: Providing a working VPN-Server.

CHAPTER 2. TECHNICAL IMPLEMENTATION 22

What happens, is the following:
The devfsd �nds all registered hardware, and creates symbolic links in the /dev/ directory.

All the devices that really exist in the system are symlinked, and all device nodes are both read
and writeable.

2.8.1.5 The /dev/pts directory
To be able to fork pty's, which is used for ssh and VPN sessions, you also need the /dev/pts
�lesystem in your kernel, which improves security quite a bit. It creates pty device nodes on
the �y, with the rights of the actual user.

According to the description on the developer of the devfs, devfs should handle the pts
directory. This didn't work for me, so I chose to use the /dev/pts �lesystem, and things worked
perfectly.

2.8.1.6 The Bootloader
To load a kernel from CD, you have to use a special bootloader. I chose the fedora core 2 boot-
CD (CD1), which contains a folder called isolinux. Copy the contents of this folder to your
hard-drive. Edit syslinux.cfg to �t your needs, and copy the kernel in that directory. That's it,
the bootloader will do the rest for you. Deeper information on how to place to bootloader on
it's right place can be found in 2.8.1.10.

2.8.1.7 The Kernel
in order to boot from the CD you need some minor kernel modi�cations. First of all, you
have to support the �lesystem you boot from (iso9660), and all the pseudo-�lesystems (devfs,
/dev/pts, proc at least). Of course you need ramdisk support.

CONFIG_PROC_FS=y
CONFIG_DEVFS_FS=y
CONFIG_DEVPTS_FS_XATTR=y
CONFIG_RAMFS=y
CONFIG_BLK_DEV_RAM=y
CONFIG_BLK_DEV_RAM_SIZE=8192
CONFIG_ISO9660_FS=y
CONFIG_JOLIET=y

2.8.1.8 Init-Scripts
You will need to do some init script modi�cations. The �rst init script that will be called on
fedora systems is /etc/rc.d/rc.sysinit, which is where you have to comment out the remount
for / to read-write mode, and insert the mounts for the ramdisks. You might want to disable
some daemons, that you don't need, and make some changes in /etc/fstab, according to your
con�guration.

2.8.1.9 E-Mail Noti�cations
I chose post�x as an MTA, as mentioned above. I bound it only to the loopback-interface, so
it doesn't listen on any physical network interface. I deactivated logrotation, and a shellscript
greps the times and ip-addresses of connections, and sends it to the SA-department. Then I do
the logrotation myself, with the few �les that I really want to rotate.

My script looks like this:

CHAPTER 2. TECHNICAL IMPLEMENTATION 23

#!/bin/bash
report and rotate logs
echo "From: VPN-Master <root@company.net>" > \
/tmp/daily_report
echo "To: admin@company.net" > > \
/tmp/daily_report
echo "Subject: VPN Connections - Daily report"\
> > /tmp/daily_report
grep l2tpd /var/log/messages | grep established \
| grep Call | awk '{print ($1 " " $2 "\
" $3 " " $10)}' | sed 's/,//' > > \
/tmp/daily_report
grep Call | cut -d ' ' -f 1-3,10 | sed 's/,//'\
> > /tmp/daily_report
/usr/sbin/sendmail admin@company.net < /tmp/daily_report

Logrotation (in this example only for one �le, just to get the idea) is done by:

ln /var/log/messages /var/log/messages.0
rm /var/log/messages
killall -HUP syslogd

2.8.1.10 The ISO Filesystem
This is how to create the ISO-Filesystem for the CD. The trick is to tell mkisofs not to stick
to the standards. Use long �lenames, merge UNIX-permissions and owners into the �lesystem,
merge special characters - in short: do everything, that is not allowed by the standard. We
don't care, if every operating system can read our CD, because the CD contains the operating
system which de�nitely can read the CD itself. Read man mkisofs to get the whole detail about
the switches.

mkisofs -l -U -R -b isolinux/isolinux.bin -c isolinux/boot.cat \
-no-emul-boot -boot-load-size 4 -boot-info-table -o /mnt/to_burn/IPsec_vpn.iso .

The -b switch is the important one. It tells mkisofs to create a bootable CD. The switch -no-
emul-boot de�nes the type of boot-cd. This mode will not emulate a �oppy (as the 2.6 kernel
without modules usually won't �t on a �oppy), nor hard-disk mode. It will tell the bios to boot
the bootloader (de�ned in the -b switch) from the CD.

Luckily, mkisofs adds all these command-line switches to the iso itself. A hexdump of the
original fedora-cd shows the mkisofs command (within the �rst 100 lines).

2.8.2 Encrypted Certi�cate Authority
I like to have the CA on my CD, but I don't want to expose the CA directly to the �lesystem.
So I created a tar archive of the CA, and encrypted8 it with a symmetric key. With shellscript,
it will be decrypted, untarred and mounted on a ramdisk.

If you have your own dedicated CA somewhere else, there is no need to put it on the CD.

8

gpg --symmetric --cipher-algo 3DES --output ca.tar.bz2.gpg ca.tar.bz2

Chapter 3

Results

What are the results of my project?

• A VPN-Server that supports every common Road Warrior operating system

• No special clients needed for any operating system, just the standard, built-in clients

• Easy setup for the client side

• Encryption protocols that are standards based and known to be secure

• No license issues.

• No limits on supported clients, except for hardware limits

• No hardware dependencies, as everything boots of a CD. Broken Hardware is swapped
out in a few minutes.

• Based on the stable Linux operating system

• Support for NAT-Traversal

• Support for Pocket PC 2003 (which I like to call the CEO's joy feature)

24

Bibliography

[Lnk: OSW] http://www.openswan.org

[Lnk: KME] http://www.kame.net/racoon

[Lnk: JDL] http://www.jacco2.dds.nl/networking/freeswan-l2tp.html

[Lnk: NCa] http://www.natecarlson.com/linux/ipsec-x509.php

[Lnk: BCD] http://www.linuxjournal.com/article/7233

25

